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Two ketolides, three macrolides, and one azalide were tested in vitro against 17 isolates of the B. burgdorferi
s.l. complex. As measured in micrograms per milliliter, activity was highest for cethromycin (MIC at which 90%
of the tested isolates were inhibited [MIC90], 0.0019 �g/ml) and telithromycin (MIC90, 0.0078 �g/ml). Elec-
tron-microscope analysis and time-kill studies also supported enhanced effectiveness of both ketolides.

Borrelia burgdorferi is susceptible to macrolides in vitro (5, 8,
9, 18, 20), and important clinical indications for macrolides in
the therapy of acute Lyme diseases (LD) include pregnancy,
�-lactam allergy, and treatment of children �14 years of age
(17, 23, 24, 26). Recently new clarithromycin derivatives, the
ketolides, proved highly active in vitro against atypical micro-
organisms, such as Chlamydia pneumoniae, Mycoplasma pneu-
moniae, and Legionella species (1, 3, 6, 22). If effective in vitro
and in vivo against borreliae, ketolides should be considered
for treatment of LD as well. Here, we investigated under stan-
dardized conditions the in vitro activities of ketolides in com-
parison to those of macrolides and one azalide against 17
isolates of the B. burgdorferi complex, including all three geno-
species pathogenic for humans, in addition to one Borrelia
valaisiana and one Borrelia bissettii tick isolate.

The clinical, geographic, and genotypic characteristics of the
strains tested (Table 1) have been published elsewhere (8, 10,
12). Except for reference strain B31 (ATCC 35210), low-pas-
sage isolates (10 to 20 passages) were tested using microtiter
trays carrying lyophilized antimicrobial agents (Merlin-Diag-
nostika GmbH, Bornheim-Hersel, Germany). The test ranges
appear in Table 1. Ceftriaxone and apramycin served as con-
trols with known high activity and no activity, respectively,
against borreliae (12, 13). MICs were determined after 72 h
using a colorimetric assay, as recently described in detail (9,
13). Minimal borreliacidal concentrations (MBCs) were deter-
mined under stringent conditions (100% killing in liquid me-
dium) at 72 h. Aliquots (20 �l) from all vials without detectable
growth were diluted (1:1,000) below the MIC in Barbour-
Stoenner-Kelly medium (BSK) and inspected for regrowth af-
ter 3 weeks of subculture (9, 10, 12). For each isolate and
substance, independent experiments were performed on dif-
ferent days, with MICs and MBCs reported as the median of
all three experiments. Moreover, time-kill studies with B. burg-
dorferi strain PKa-1 and Borrelia afzelii strain FEM1 exposed to
telithromycin, cethromycin, and erythromycin for 120 h and
electron-microscope analysis of B. garinii PSth cultures in the

log phase of growth treated with 0.0312 �g of cethromycin/ml
for 72 h were performed as described elsewhere (10, 13, 19).
To detect possible differences in MIC and MBC data for the
borrelial genospecies, the Kruskall-Wallis test was applied us-
ing BIAS, version 5.03 (Epsilon Verlag, Hochheim, Germany),
for statistical calculation. Finally, possible antibiotic-medium
interactions were investigated after 24 h of preincubation of
the antibiotic-BSK preparation followed by conventional MIC
determination for another fastidious organism, S. pneumoniae
ATCC 49619 (Table 1). Testing was performed in triplicate,
following NCCLS protocols (15) except for use of a preincu-
bated antibiotic-BSK preparation.

Apramycin was ineffective against the 17 borrelial strains.
Table 1 summarizes the in vitro activities of the other antimi-
crobial agents. MICs and MBCs of each antimicrobial agent
for the same isolate spanned a maximum range of �1 log2 unit
dilution around the median only. The ketolides were the most
potent against borrelial isolates on a micrograms-per-milliliter
basis. For all agents except cethromycin and telithromycin, the
MIC at which 90% of isolates were inhibited (MIC90) and the
MBC at which 90% of the isolates were killed were �0.01
�g/ml and �0.25 �g/ml, respectively. Statistical analysis, in-
cluding all measured MICs and MBCs (n � 816), did not show
significant differences in the tested genospecies. In our time-
kill experiments (Fig. 1A to C), exposure to the ketolides for
PKa-1 and FEM1 at three log2 unit dilutions above the MIC
led to a �3 log10 unit (99.9%) reduction of morphologically
intact motile cells after 48 to 120 h. Reduction was more
pronounced for FEM1 than for PKa-1. Erythromycin clearly
was less effective than the ketolides. Electron-microscopic
analysis of strain PSth exposed to cethromycin at 0.0312 �g/ml
(4 log2 unit dilutions above the MIC90) further substantiated in
vitro activity by showing spheroblast formation and severe cell
disintegration (data not shown).

Test results for S. pneumoniae ATCC 49619 in BSK appear
in Table 1. The conventional MICs for apramycin (data not
shown), erythromycin, and ceftriaxone were in the range pub-
lished for these agents by the NCCLS (15, 16). The MICs for
azithromycin, clarithromycin, telithromycin, and cethromycin,
however, were at the lower range limits or were one to two log2

unit dilutions below the ranges specified by the NCCLS (15)
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and the tentative ranges indicated by the manufacturer for
cethromycin.

In our study, the rank order of activity by classical macro-
lides and azalides against borreliae clearly corresponds to the
effectiveness of these agents as revealed by in vitro suscepti-
bility studies and clinical treatment trials to date (2, 4, 5, 7, 8,
9, 11, 23, 24), demonstrating higher in vitro effectiveness for
azithromycin (MIC90, 0.0156 �g/ml) than for erythromycin
(MIC90, 0.0625 �g/ml), roxitromycin (MIC90, 0.0625 �g/ml),
and clarithromycin (MIC90, 0.0312 �g/ml). Median MICs of
the different substances, however, tended to vary over a 10-fold
range between individual strains, with the B. garinii isolate
PSth and the B. afzelii isolate EB1 showing the highest MICs
for both the classical macrolides and the ketolides. In contrast
to the recent findings of Sicklinger et al. (20), we could not
show significant differences in MBCs for the different geno-
species tested against macrolides or ketolides, possibly owing
to differences in test methodology and inoculum. Instead, our
in vitro findings point to interstrain variability of the in vitro
susceptibilities of B. burgdorferi to macrolides rather than to
intergenospecies-specific variations as observed for other an-
timicrobial agents (8, 9, 11, 13). Testing of S. pneumoniae
ATCC 49619 clearly demonstrated increased activities of some
macrolides in BSK. This side effect of BSK also was noted by
other authors (2, 21). However, further investigations are nec-
essary to assess possible consequences for in vitro susceptibility
testing of these agents against B. burgdorferi.

Classical macrolides and azalides frequently fail in the ther-
apy of early LD (7, 14, 17, 26), and clinical relapse has been
observed following conclusion of treatment (14, 17, 26). More-
over, it has been speculated that resistance may develop in
borreliae preexposed to erythromycin owing to resistant sub-
populations (25). Based upon our findings, however, the ke-
tolides were superior in vitro on a micrograms-per-milliliter
basis when tested alongside classical macrolides under identi-
cal test conditions in BSK. This is further substantiated by our
time-kill experiments (Fig. 1A to C) and by electron micros-
copy. Moreover, maximum concentrations of ketolides in
plasma after regular oral dosage (1, 6, 27) are 90 to 270 times
higher than the MIC90s against borreliae in our study, and
tissue concentrations exceed by 10-fold the maximum plasma
concentrations of both drugs in controls (1, 6, 27). Therefore,
the potential role of ketolides in the treatment of LD merits
further evaluation.
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